Monographien, Herausgeberbände und Handreichungen
[1] Benölken, R. & Käpnick, F. (Hrsg., 2023). Deutschlands schönste Matheaufgaben aus der Sekundarstufe. Spannende Aufgaben aus einem bundesweiten Wettbewerb mit didaktischer Anleitung, Tipps und Lösungen. Hamburg: scolix.
[2] Käpnick, F. (Hrsg.), Auhagen, W., Benölken, R., Körkel, V., Ohmann, Y. & Schreiber, L. (2021). Forschen und Knobeln: Mathematik. Klasse 7 und 8. Vielfältige Aufgaben zu zentralen Lehrplanthemen mit didaktischer Anleitung und Lösungshinweisen. Hamburg: scolix.
[3] Käpnick, F. (Hrsg.), Auhagen, W., Benölken, R., Fuchs, M., Körkel, V., Ohmann, Y., Schreiber, L. & Sjuts, B. (2021). Forschen und Knobeln: Mathematik. Klasse 5 und 6. Vielfältige Aufgaben zu zentralen Lehrplanthemen mit didaktischer Anleitung und Lösungshinweisen. Hamburg: AOL-Verlag.
[4] Käpnick, F. & Benölken, R. (2020). Mathematiklernen in der Grundschule (2. Auflage). Wiesbaden: Springer Spektrum.
[5] Veber, M., Benölken, R. & Pfitzner, M. (Hrsg., 2019). Potenzialorientierte Förderung in den Fachdidaktiken (Begabungsförderung: Individuelle Förderung und Inklusive Bildung, Band 7). Münster: Waxmann.
[6] Benölken, R., Gorski, H.-J. & Müller-Philipp, S. (2019). Leitfaden Geometrie. Für Studierende der Lehrämter (7., erweiterte Auflage). Wiesbaden: Springer Spektrum.
[7] Benölken, R., Gorski, H.-J. & Müller-Philipp, S (2018). Leitfaden Arithmetik. Für Studierende der Lehrämter (7., erweiterte Auflage). Wiesbaden: Springer Spektrum.
[8] Benölken, R., Berlinger, N. & Veber, M. (Hrsg., 2018). Alle zusammen! Offene, substanzielle Problemfelder als Gestaltungsbaustein für inklusiven Mathematikunterricht. Münster: WTM.
[9] Benölken, R. & Käpnick, F. (Hrsg., 2016). Individuelles Fördern im Kontext von Inklusion. Münster: WTM.
[10] Benölken, R. (2011). Mathematisch begabte Mädchen. Untersuchungen zu geschlechts- und begabungsspezifischen Besonderheiten im Grundschulalter. Münster: WTM.
[11] Benölken, R. (2010). „Quis igitur potest esse nisi deus?“ Die Gottesbeweise in Lactanz, De ira dei 10,34–10,44. (Bd. 1 der Reihe „Polyptoton – Münsteraner Sammlung Akademischer Schriften“; zugleich Hausarbeit im Rahmen der Ersten Staatsprüfung für das Lehramt der Sekundarstufen II und I. Universität Münster, betreut durch Prof. Dr. R. Henke ). Berlin u.a.: Lit.
Mitherausgeberschaft bei Themenheften
[12] Ruwisch, S., Götze, D. & Benölken, R. (Hrsg., 2023). Interventionsprogramme und Förderkonzepte für Kinder mit besonderen Schwierigkeiten beim Erlernen des Rechnens. mathematica didactica, 46.
[13] Benölken, R., Dexel, T., Käpnick, F. & Witte, A. (Hrsg., 2024). Begabungsförderung - für alle. mathematik lehren [in Vorbereitung].
Herausgeberschaft
"mathematica didactica" (wissenschaftliche Zeitschrift, gemeinsam mit Prof. Dr. A. Büchter, Prof. Dr. K. Lengnink, Prof. Dr. B. Rott, Prof. Dr. S. Ruwisch und Prof. Dr. M. Vogel; ständiger Herausgeber seit 2019; stellvertretender Schriftführer seit 2021).
"Diversität und Inklusion im Kontext mathematischer Lehr-Lern-Prozesse" (Reihe im WTM-Verlag, Münster, gemeinsam mit JProf. Dr. M. Veber und Dr. N. Berlinger; seit 2018).
"Polyptoton - Münsteraner Sammlung Akademischer Schriften" (Reihe im Lit-Verlag, Berlin/Münster; gemeinsam mit Dr. B. Lucht und Dr. S. Pinkernell-Kreidt; seit 2011).
Referierte Publikationen in wissenschaftlichen Fachzeitschriften
[14] Benölken, R. & Tiedke, A. (im Druck). Grundlegende Orientierungen und Gestaltungsansätze für Lehramtsstudien mit Ausrichtung auf berufliche Fächer hinsichtlich der Profilierung des Fachs Mathematik. Zeitschrift für Berufs- und Wirtschaftspädagogik [angenommen].
[15] Bohlmann, N. & Benölken, R. (2020). Complex tasks: potentials and pitfalls. Mathematics, 8(10), 1780; doi:10.3390/math8101780
[16] Benölken, R. (2019). Giftedness, gender and motivation – The impact of mathematics self-efficacy, interest and attitudes as determinants to identify mathematical giftedness. Education Journal, 8(5), S. 211 – 225.
[17] Benölken, R. & Mayweg-Paus, E. (2018). Kompetenzerwerb in Lehr-Lern-Laboren – Eindrücke aus dem Projekt „MaKosi“. Die Hochschullehre, 4, S. 491 – 504.
[18] Käpnick, F. & Benölken, R. (2017). Inwiefern eignen sich Schülerwettbewerbe für die Diagnose und Förderung mathematischer Begabungen? – Theoretisch-analytische Erörterungen. Journal für Begabtenförderung, 2, S. 36 – 50.
[19] Benölken, R. (2017). Begabung, Geschlecht und Motivation. Erkenntnisse zur Bedeutung motivationaler Komponenten als Bedingungsfaktoren für die Entwicklung mathematischer Begabungen. mathematica didactica, 40(1), S. 55 – 69.
[20] Käpnick, F. & Benölken, R. (2015). Ein konzeptioneller Ansatz zur Kennzeichnung mathematisch begabter Kinder und Möglichkeiten ihrer Diagnostik und Förderung aus fachdidaktischer Perspektive. Journal für Begabtenförderung, 2, S. 23 – 38.
[21] Benölken, R. (2014). Begabung, Geschlecht und Motivation. Erkenntnisse zur Bedeutung von Selbstkonzept, Attribution und Interessen als Bedingungsfaktoren für die Identifikation mathematischer Begabungen. Journal für Mathematik-Didaktik, 35 (1), S. 129 – 158.
[22] Benölken, R. (2013). Geschlechtsspezifische Besonderheiten in der Entwicklung mathematischer Begabungen. Forschungsergebnisse und praktische Konsequenzen. mathematica didactica, 36, S. 66-96.
Referierte Publikationen in Proceedings
[23] Brandl, M., Benölken, R., Szabo, A. & Mellroth, E. (2024). Different European fostering policies and teaching practices for mathematically gifted individuals – overview and examples. Proceedings of the 13th International Conference on Mathematical Creativity and Giftedness [MCG 13] [im Druck].
[24] Weber, D., Beumann, S. & Benölken, R. (2023). Teachers' view of Twice-Exceptional Students – Outline of the challenges in recognizing mathematical giftedness and supporting needs of hearing impairment. In P. Drijvers, C. Csapodi, H. Palmér, K. Gostonyi & E. Herendiné-Kónya (Hrsg.), Proceedings of the 13th Congress of the European Society for Research in Mathematics Education (CERME 13). Alfréd Rényi Institute of Mathematics, Eötvös Loránd University and ERME, S. 1851 – 1858.
[25] Tiedke, A., Dexel, T. & Benölken, R. (2022). The construction of low attainment in mathematics - why are primary school children selected for intervention programs? Results from a meta-analysis of case studies. In J. Hodgen, E. Geraniou, G. Bolondi & F. Ferretti (Hrsg.), Proceedings of the 12th Congress of the European Society for Research in Mathematics Education (CERME 12). Free University of Bozen-Bolzano and ERME, S. 1854 – 1862.
[26] Auhagen, W. & Benölken, R. (2022). Developing primary student teachers' professional competencies in learning-teaching-laboratories "on distance": impressions from a project supporting mathematically gifted children. In S. A. Chamberlin (Hrsg.), On the Road to Mathematical Expertise and Innovation (Proceedings of the 12th International Conference on Mathematical Creativity and Giftedness (MCG 12)). Münster: WTM, S. 79 – 85.
[27] Beumann, S. & Benölken, R. (2022). Just more than numbers, facts or calculus? – Beliefs of mathematical gifted students. In S. A. Chamberlin (Hrsg.), On the Road to Mathematical Expertise and Innovation (Proceedings of the 12th International Conference on Mathematical Creativity and Giftedness (MCG 12)). Münster: WTM, S. 86 – 92.
[28] Benölken, R., Käpnick, F., Auhagen, W. & Schreiber, L. (2019). ‘LemaS’ – A joint initiative of Germany’s federal government and Germany’s federal countries to foster high-achieving and potentially gifted pupils. In M. Nolte (Hrsg.), Including the highly gifted and creative students – Current ideas and future directions (Proceedings of the 11th International Conference on Mathematical Creativity and Giftedness (MCG 11)). Münster: WTM, S. 109 – 116.
[29] Aßmus, D. & Benölken, R. (2019). What do student teachers know about mathematical giftedness? First insights of an exploratory study. In M. Nolte (Hrsg.), Including the highly gifted and creative students – Current ideas and future directions (Proceedings of the 11th International Conference on Mathematical Creativity and Giftedness (MCG 11)). Münster: WTM, S. 95 – 102.
[30] Bohlmann, N. & Benölken, R. (2019). Complex tasks for learning in a complex world?!. Proceedings of the 71th Conference of the International Commission for the Study and Improvement of Mathematics Teaching (CIEAEM 71). Braga, Portugal: IEAEM, S. 345 – 353.
[31] Dexel, T., Benölken, R. & Veber, M. (2019). Diversity, Inclusion and the question of Mathematics Teacher Education – How do student teachers reflect a potential-related view? In U. T. Jankvist, M. van den Heuvel-Panhuizen, & M. Veldhuis (Hrsg.), Proceedings of the 11th Congress of the European Society for Research in Mathematics Education (CERME 11). Utrecht, the Netherlands: Freudenthal Group & Freudenthal Institute, Utrecht University and ERME, S. 1862 – 1869.
[32] Benölken, R. (2018). Research results on mathematical talent, gender and motivation. In P. Blaszczyk & B. Pieronkiewicz (Hrsg.), Mathematical Transgressions 2015 (Proceedings of the 2nd Interdisciplinary Scientific Conference “Mathematical Transgressions”). Krakau, Polen: universitas, S. 267 – 282.
[33] Benölken, R. (2017). Developing student teachers’ professional knowledge of low attainments’ support by “learning-teaching-laboratories”. In T. Dooley & G. Gueudet (Hrsg.), Proceedings of the 10th Congress of the European Society for Research in Mathematics Education (CERME 10). Dublin, Irland: DCU Institute of Education and ERME, S. 3264 – 3271.
[34] Benölken, R. (2017). “Mathe mit Pfiff” – A project aiming at extracurricular enrichment at school. Proceedings of the 10th Mathematical Creativity and Giftedness International Conference (MCG 10). Nikosia, Zypern: MCG, S. 117 – 122.
[35] Benölken, R. (2015). “Mathe für kleine Asse” – An enrichment project at the University of Münster. Proceedings of the 9th Mathematical Creativity and Giftedness International Conference (MCG 9). Sinaia, Rumänien: MCG, S. 140 – 145.
[36] Benölken, R. (2015). The significance of motivational factors as determinants for the development of girls’ mathematical talent. The Turkish Online Journal of Educational Technology, Special Issue for INTE 2015 (Barcelona, Spanien), S. 629 – 638.
[37] Benölken, R. (2015). The impact of mathematics interest and attitudes as determinants in order to identify girls‘ mathematical talent. In K. Krainer & N. Vondrová (Hrsg.), Proceedings of the 9th Congress of the European Society for Research in Mathematics Education (CERME 9). Charles University, Faculty of Education, and ERME: Prag, Tschechien, S. 970 – 976.
[38] Benölken, R. (2015). Gender- and giftedness-specific differences in mathematical self-concepts, attributions and interests. Procedia – Social and Behavioral Sciences, 174 (Special Issue for INTE 2014; Paris, Frankreich), S. 464 – 473.
[39] Benölken, R. (2014). Perspektiven der mathematikdidaktischen Begabungsforschung in Deutschland. Proceedings zur internationalen Konferenz „Unterstützung der Begabung – Entwicklung der Kreativität“ der „International Academy for the Humanization of Education“ (IAHE). IAHE: Witebsk, Belarus, S. 236 – 240.
[40] Benölken, R. (2014). The impact of self-concepts, attributions and interests on the identification of girls’ giftedness. Proceedings of the 8th Mathematical Creativity and Giftedness International Conference (MCG8). MCG: Denver, USA, S. 13 – 19.
[41] Benölken, R. (2012). Mathematical giftedness, gender and creativity. Proceedings of the 7th Mathematical Creativity and Giftedness International Conference (MCG7). MCG: Busan, Republic of Korea, S. 121 – 128.
Referierte Publikationen in Praxiszeitschriften
[42] Weber, D. & Benölken, R. (2023). Das Lehr-Lern-Labor "MaKosi 2.0". Ein hybrides Beispielkonzept für die Förderung von Kindern mit besonderen Schwierigkeiten beim Mathematiklernen. Die Materialwerkstatt, 5(1), S. 24 – 68.
[43] Radünz, L. & Benölken, R. (2021). Mathematische Grundvorstellungen durch Bewegungen aufbauen. Potenziale bewegten Lernens aufgezeigt am Beispiel von Bewegungen auf dem „Zahlenteppich“ zur Förderung des Stellenwertverständnisses. Die Materialwerkstatt, 3(1), S. 40 – 54.
[44] Auhagen, W. & Benölken, R. (2021). Lea – Eine Fallstudie zu Katalysatorwirkungen durch die Teilnahme an einem Drehtürmodell. Labyrinth, 145, S. 32 – 33.
[45] Auhagen, W., Beckmann, S., Beumann, S., Dexel, T., Radünz, L., Tiedke, A., Weber, D. & Benölken, R. (2020). Lehr-Lern-Labore auf Distanz? Ein Erfahrungsbericht aus der Mathematikdidaktik. Die Materialwerkstatt, 2(1), S. 63 – 86.
[46] Benölken, R. (2019). Transparenter Umgang mit gendertypischen Phänomenen im Mathematikunterricht. Der Mathematikunterricht, 5, S. 38 – 47.
[47] Benölken, R., Hammad. C., Radünz, L. & Veber, M. (2019). Wege in Mannheim. Ein offenes, substanzielles Problemfeld. mathematik lehren, 214, S. 28 – 35.
[48] Veber, M. & Benölken, R. (2019). Inklusiver und fachfremder Unterricht. Zur Verbindung inklusionspädagogischer, fachdidaktischer und fachwissenschaftlicher Aspekte von Wissen. Lernende Schule, 86, S. 16 – 19.
[49] Dexel, T., Benölken, R. & Veber, M. (2018). Bausteine für inklusiven Mathematikunterricht. Potenzialorientierung als Leitgedanke. R&E-SOURCE, Special Issue 11 (https://journal.ph-noe.ac.at/index.php/resource/issue/view/25?).
[50] Benölken, R., Veber, M., Hammad, C. & Berlinger, N. (2018). Wege in Manhattan. Ein Beispiel für Potenziale natürlicher Differenzierung im inklusiven Mathematikunterricht durch Öffnungen ausgehend vom Fach. Forschung & Entwicklung Edition, 24, S. 27 – 38.
[51] Veber, M., Benölken, R., Doudis, E. & Berlinger, N. (2018). Begabungsförderung „inklusiv“ – theoretische Basis und praktische Umsetzung. Forschung & Entwicklung Edition, 24, S. 7 – 14.
[52] Benölken, R., Berlinger, N. & Veber, M. (2018). Das Projekt „Inklusiver Mathematikunterricht“. Konzeptuelle Ansätze für Unterricht und Lehrerbildung. MNU Journal, 5, S. 340 – 345.
[53] Benölken, R., Berlinger, N., Hammad, C. & Veber, M. (2017). „Was entdeckst du?“. mathematik lehren, 201, S. 24, und Beihefter „MatheWelt – Das Schülerarbeitsheft“.
[54] Benölken, R. (2013). Mathematisch begabte Mädchen finden und fördern. Grundschule, 11, S. 20 – 22.
[55] Benölken, R. (2013). Anregende Aufgaben für Mädchen und Jungen, M1 – M8 [Beihefter]. Grundschule, 11, I – VIII.
[56] Benölken, R. (2011). Mathematisch begabte Mädchen. Heterogenität für die Förderung aller Kinder nutzen. Mathematik Differenziert, 3, S. 10 – 13.
[57] Benölken, R. (2010). Anspruchsvolle mathematische Bewegungsspiele – auch und gerade für Mädchen. MNU Primar, 2, S. 95 – 98.
Weitere Beiträge zu Sammel- und Tagungsbänden sowie zu Zeitschriften
Referierte Publikationen sind in diesem Abschnitt mit * gekennzeichnet
[58] Benölken, R., Dexel, T., Witte, A. & Käpnick, F. (2024). Begabungsförderung – für alle! mathematik lehren [Basisartikel im Themenheft „Begabungsförderung – für alle“; angenommen].
[59] *Weber, D. & Benölken, R. (2024). Subjektive Theorien von LemaS-Lehrkräften zu mathematisch begabten und interessierten Kindern. Erfahrungen aus der Praxis als Ausgangspunkt für die Gestaltung der Lehramtsprofessionalisierung in der Transferphase. In G. Weigand et al. (Hrsg.), Leistung macht Schule, Bd. 3 [Arbeitstitel]. Bielefeld: wbv [im Druck].
[60] *Brandl, M., Szabo, A. & Benölken, R. (2024). Mathematical giftedness. In L. Hoogeveen, C. O’Reilly, K. Verschueren & E. Kroesbergen (Hrsg.), European Handbook for Gifted Education and Talent Development [im Druck].
[61] *Benölken, R. & Auhagen, W. (2024). Fachsubstanz als Anlass für innermathematische Experimente – die Sicht Lernender. In S. Beumann & S. Geisler (Hrsg.), Experimentieren im Mathematikunterricht – Aktuelle Beiträge aus Forschung und Praxis. Münster: WTM [im Druck].
[62] *Auhagen, W., Benölken, R., Hildebrandt, C. & Matzner, M. (2023). Potenziale von Fachverbindungen für die Begabungsförderung – Perspektiven zwischen Informatik und Mathematik. In C. Fischer, C. Fischer-Ontrup, F. Käpnick, N. Neuber & C. Reintjes (Hrsg.), Potenziale erkennen – Talente entwickeln – Bildung nachhaltig gestalten. Beiträge aus der Begabungsförderung. Münster: Waxmann, S. 97 – 111.
[63] Tiedke, A., Benölken, R. & Dexel, T. (2023). Besondere Schwierigkeiten beim Mathematiklernen – Eindrücke zu Risikofaktoren aus Fallstudien. In N. Berlinger & T. Dexel (Hrsg.), Mathematisches Tätigsein ist vielfältig – Begabungsfördernder Mathematikunterricht für alle Kinder. Münster: WTM, S. 70 – 85.
[64] Benölken, R. (2023). Nachhaltige Entwicklung professioneller Handlungskompetenzen – Überlegungen für Mathematiklehramtsveranstaltungen. In N. Berlinger & T. Dexel (Hrsg.), Mathematisches Tätigsein ist vielfältig – Begabungsfördernder Mathematikunterricht für alle Kinder. Münster: WTM, S. 149 – 157.
[65] *Weber, D. & Benölken, R. (2022). Erfahrungen von Kindern mit Schwierigkeiten beim Mathematiklernen in hybriden und digital gestützten Lernarrangements. In J. Bonow, T. Dexel, R. Rink, C. Schreiber & D. Walter (Hrsg.), Digitale Medien und Heterogenität. Chancen und Herausforderungen für die Mathematikdidaktik (Reihe „Lernen, Lehren und Forschen mit digitalen Medien in der Primarstufe“, Bd. 9). Münster: WTM, S. 197 – 212.
[66] *Auhagen, W. & Benölken, R. (2022). Substanziell anspruchsvolle und offene mathematische Problemfelder als Baustein von Begabten- und Begabungsförderung. Ein produktives Format für gemeinsame Entwicklungen von Schulpraxis und Wissenschaft. In G. Weigand, C. Fischer, F. Käpnick, C. Perleth, F. Preckel, M. Vock & H.-W. Wollersheim (Hrsg.), Dimensionen der Begabungs- und Begabtenförderung in der Schule (Leistung macht Schule, Bd. 2). Bielefeld: wbv, S. 265 – 278.
[67] *Veber, M., Simon, T. & Benölken, R. (2022). Umgang mit Vielfalt im Unterricht – Vielfalt fördern im Unterricht. Allgemeine fachdidaktische Perspektiven. In C. Fischer & D. Rott (Hrsg.), Individuelle Förderung – Heterogenität und Handlungsperspektiven in der Schule. Münster: utb. Waxmann, S. 141 – 150.
[68] *Käpnick, F. & Benölken, R. (2022). Vielfalt im regulären Mathematikunterricht wertschätzen und fördern – Grundorientierungen aus fachdidaktischer Perspektive. In C. Fischer & D. Rott (Hrsg.), Individuelle Förderung – Heterogenität und Handlungsperspektiven in der Schule. Münster: utb. Waxmann, S. 151 – 162.
[69] *Veber, M., Simon, T. & Benölken, R. (2021). Individuelle Förderung und Inklusion zwischen theoretischem Anspruch sowie (hoch)schulpraktischen Herausforderungen. Allgemeine fachdidaktische Perspektiven. In C. Caruso, C. Harteis & A. Gröschner (Hrsg.), Theorie und Praxis in der Lehrerbildung Verhältnisbestimmungen aus der Perspektive von Fachdidaktiken. Heidelberg: Springer, S. 421 – 438.
[70] *Benölken, R., Veber, M. & Berlinger, N. (2020). Inklusionssensible Mathematikdidaktik lehren – Konzepte und Evaluationsergebnisse aus einem Lehr- und Forschungsprojekt. In M. Zimmermann, W. Paravicini, & J. Schnieder (Hrsg.), Hanse-Kolloquium zur Hochschuldidaktik der Mathematik 2016 und 2017. Münster: WTM, S. 81 – 94.
[71] *Benölken, R. & Veber, M. (2020). Inklusion und Begabung – von der Begabtenförderung zur Potenzialorientierung. In C. Kiso und S. Fränkel (Hrsg.), Inklusive Begabungsförderung in den Fachdidaktiken – Diskurse, Forschungslinien und Praxisbeispiele. Bad Heilbrunn: Klinkhardt, S. 37 – 64.
[72] *Benölken, R. (2020). Besondere Begabungen im Fokus intersektionaler Forschung – Überlegungen ausgehend von der Diversitätsfacette Geschlecht im Kontext von Mathematik. In C. Fischer, C. Fischer-Ontrup, F. Käpnic, N. Neuber, C. Solzbacher & P. Zwitserlood (Hrsg.), Begabungsförderung, Leistungsentwicklung, Bildungsgerechtigkeit – für alle! Beiträge aus der Begabungsförderung. Münster und New York: Waxmann, S. 45 – 56.
[73] Benölken, R. & Auhagen, W. (2020). Leistung macht Schule Bildungsgerechtigkeit an der Schnittstelle von Begabten-, Begabungs- und Genderforschung. BUW OUTPUT, 2, 18 – 23.
[74] *Käpnick, F. & Benölken, R. (2020). Entwicklung adaptiver Konzepte für eine diagnosebasierte individuelle Förderung leistungsstarker und potenziell besonders leistungsfähiger Schülerinnen und Schüler im Mathematikunterricht. In G. Weigand, F. Fischer, F. Käpnick, C. Perleth, F. Preckel, M. Vock & H.-W. Wollersheim (Hrsg.), Leistung macht Schule Förderung leistungsstarker und potenziell besonders leistungsfähiger Schülerinnen und Schüler. Weinheim und Basel: Beltz, S. 94 – 103.
[75] Benölken, R., Veber, M., & Goldenberg, E. (2020). Umgang mit Vielfalt im Mathematikunterricht und fachfremdes Unterrichten. Implikationen für die Professionalisierung von Lehrpersonen. SchulVerwaltung Nordrhein-Westfalen – Fachzeitschrift für Schulentwicklung und Schulmanagement, 31(2), 45 – 47.
[76] *Veber, M. & Benölken, R. (2019). Beliefs fachfremd unterrichtender Lehrkräfte zu inklusionssensiblem Mathematikunterricht. In R. Porsch & B. Rösken-Winter (Hrsg.), Professionelles Handeln im fachfremd erteilten Mathematikunterricht. Empirische Befunde und Fortbildungskonzepte. Wiesbaden: Springer Spektrum, S. 105 – 140.
[77] Käpnick, F. & Benölken, R. (2019). Mathematisch-produktives Forschen in inklusiven Lernsettings. In K. Pamperien & A. Pöhls (Hrsg.), Alle Talente wertschätzen – Grenz- und Beziehungsgebiete der Mathematikdidaktik ausschöpfen (Festschrift für Marianne Nolte). Münster: WTM, S. 56 – 71.
[78] Pfitzner, M., Benölken, R. & Veber, M. (2019). Einleitung. In M. Veber, R. Benölken & M. Pfitzner (Hrsg.), Potenzialorientierte Förderung in den Fachdidaktiken. Münster: Waxmann, S. 9 – 13.
[79] Benölken, R., Dexel, T. & Berlinger, N. (2019). Mathematikunterricht und Potenzialorientierung. In M. Veber, R. Benölken & M. Pfitzner (Hrsg.), Potenzialorientierte Förderung in den Fachdidaktiken. Münster: Waxmann, S. 43 – 59.
[80] Benölken, R., Pfitzner, M. & Veber, M. (2019). Potenzialorientierung – Denkspuren. In M. Veber, R. Benölken & M. Pfitzner (Hrsg.), Potenzialorientierte Förderung in den Fachdidaktiken. Münster: Waxmann, S. 43 – 59.
[81] *Benölken, R. & Veber, M. (2019). Lernwerkstattarbeit an der Schnittstelle von Fachdidaktik und Schulpädagogik. In R. Baar, A. Feindt & S. Trostmann (Hrsg.), Struktur und Handlung in Lernwerkstätten. Hochschuldidaktische Räume zwischen Einschränkung und Ermöglichung. Bad Heilbrunn: Klinkhardt, S. 63 – 73.
[82] *Veber, M. & Benölken, R. (2018). Potenziale aller Kinder und Jugendlicher als Ausgangspunkt pädagogischen Handelns. Mathematikdidaktische Blicke auf Unterricht und Lehrer*innenbildung. In S. Bartusch, C. Klektau, T. Simon, S. Teumer & A. Weidermann (Hrsg.), Lernprozesse begleiten. Anforderungen an pädagogische Institutionen und ihre Akteur*innen. Wiesbaden: Springer VS, S. 255 – 268.
[83] Benölken, R., Veber, M. & Berlinger, N. (2018). Gestaltung fachlich fundierter Lehr-Lern-Settings für alle ohne Ausschluss – Grundlegende Verortungen. In R. Benölken, N. Berlinger & M. Veber (Hrsg.), Alle zusammen! Offene, substanzielle Problemfelder als Gestaltungsbaustein für inklusiven Mathematikunterricht. Münster: WTM, S. 1 – 15.
[84] Benölken, R., Berlinger, N. & Veber, M. (2018). Würfelgebäude. In R. Benölken, N. Berlinger & M. Veber (Hrsg.), Alle zusammen! Offene, substanzielle Problemfelder als Gestaltungsbaustein für inklusiven Mathematikunterricht. Münster: WTM, S. 161 – 172.
[85] Käpnick, F. & Benölken, R. (2018). „Leistung macht Schule“ (LemaS) – Ein BMBF-Projekt zur Förderung leistungsstarker und potenziell besonders leistungsfähiger Schülerinnen und Schüler. Mitteilungen der Gesellschaft für Didaktik der Mathematik, 105, S. 27 – 28.
[86] Berlinger, N., Veber, M. & Benölken, R. (2018). Inklusiver Mathematikunterricht – ein kooperatives Lehrprojekt zwischen Mathematikdidaktik und Bildungswissenschaften. In N. Neuber, W. Paravicini & M. Stein (Hrsg.), Forschendes Lernen. The Wider View. Eine Tagung des Zentrums für Lehrerbildung der Westfälischen Wilhelms-Universität Münster vom 25. bis 27.09.2017 (Schriften zur Allgemeinen Hochschuldidaktik, Band 3). Münster: WTM, S. 401 – 404.
[87] *Veber, M., Benölken, R. & Berlinger, N. (2018). Inklusiver Grundschulmathematikunterricht – Chancen und Herausforderungen für die erste Phase der Lehrer*innenbildung. In S. Miller, B. Holler-Nowitzki, B. Kottmann, S. Lesemann, B. Letmathe-Henkel, N. Meyer, R. Schroeder & K. Velten (Hrsg.), Profession und Disziplin. Grundschulpädagogik im Diskurs (Tagungsband zur 25. Jahrestagung der DGfE Kommission Grundschulforschung und Pädagogik der Primarstufe). Wiesbaden: Springer VS, S. 203 – 209.
[88] *Benölken, R. (2017). Mathematikdidaktische Perspektiven auf inklusiven Unterricht. Potenziale von Enrichmentformaten als möglicher Baustein. In C. Fischer, C. Fischer-Ontrup, F. Käpnick, F.-J. Mönks, N. Neuber & C. Solzbacher (Hrsg.), Potenzialentwicklung, Begabungsförderung, Bildung der Vielfalt. Beiträge aus der Begabungsforschung (Teil II). Münster: Waxmann, S. 29 – 44.
[89] *Veber, M., Pfitzner, M. & Benölken, R. (2017). Potenzialorientierte Förderung – Chancen für inklusive Bildung. In C. Fischer, C. Fischer-Ontrup, F. Käpnick, F.-J. Mönks, N. Neuber & C. Solzbacher (Hrsg.), Potenzialentwicklung, Begabungsförderung, Bildung der Vielfalt. Beiträge aus der Begabungsforschung (Teil I). Münster: Waxmann, S. 393.
[90] *Benölken, R. (2017). Mathematikdidaktische Perspektiven zu inklusivem Unterricht. In C. Fischer, C. Fischer-Ontrup, F. Käpnick, F.-J. Mönks, N. Neuber & C. Solzbacher (Hrsg.), Potenzialentwicklung, Begabungsförderung, Bildung der Vielfalt. Beiträge aus der Begabungsforschung (Teil I). Münster: Waxmann, S. 407 – 412.
[91] Benölken, R. (2016). „MaKosi“ – Ein Förder-, Lehr- und Forschungsprojekt im Themenkomplex „Rechenprobleme“. In R. Benölken & F. Käpnick (Hrsg.), Individuelles Fördern im Kontext von Inklusion. Münster: WTM, S. 51 – 63.
[92] Benölken, R. (2016). Offene substanzielle Aufgaben – Ein möglicher Schlüssel auch und gerade für die Gestaltung inklusiven Mathematikunterrichts. In R. Benölken & F. Käpnick (Hrsg.), Individuelles Fördern im Kontext von Inklusion. Münster: WTM, S. 203 – 213.
[93] Benölken, R. (2016). Zur Bedeutung motivationaler Konstrukte für die Identifikation und die Entwicklung mathematischer Begabungen bei Mädchen. In A. Blunck, R. Motzer& N. Oswald (Hrsg.), Mathematik und Gender. Frauen in der Mathematikgeschichte – Mädchen und Mathematikunterricht heute. Hildesheim: Franzbecker, S. 43 – 63.
[94] Benölken, R. (2016). Per: „Ich bin Spitze in Sport, aber Mathe mag ich nicht“ In F. Käpnick (Hrsg.), Verschieden verschiedene Kinder – Inklusives Fördern im Mathematikunterricht. Seelze: Klett/Kallmeyer, S. 13 – 21.
[95] Benölken, R. (2016). Sayuri: „Musik und Mathe sind meine Leidenschaft!“ In F. Käpnick (Hrsg.), Verschieden verschiedene Kinder – Inklusives Fördern im Mathematikunterricht. Seelze: Klett/Kallmeyer, S. 47 – 54.
[96] Benölken, R. (2016). Julia und Tobias: „Wir sind ein ungleiches Zwillingspaar“ In F. Käpnick (Hrsg.), Verschieden verschiedene Kinder – Inklusives Fördern im Mathematikunterricht. Seelze: Klett/Kallmeyer, S. 54 – 61.
[97] Benölken, R., Berlinger, N. & Käpnick, F. (2016). Offene substanzielle Aufgaben und Aufgabenfelder. In F. Käpnick (Hrsg.), Verschieden verschiedene Kinder – Inklusives Fördern im Mathematikunterricht. Seelze: Klett/Kallmeyer, S. 157 – 172.
[98] Benölken, R. & Käpnick, F. (2016). Stationenlernen. In F. Käpnick (Hrsg.), Verschieden verschiedene Kinder – Inklusives Fördern im Mathematikunterricht. Seelze: Klett/Kallmeyer, S. 188 – 201.
[99] Benölken, R. & Kelm, J. (2016). Mathematische Spiele. In F. Käpnick (Hrsg.), Verschieden verschiedene Kinder – Inklusives Fördern im Mathematikunterricht. Seelze: Klett/Kallmeyer, S. 202 – 214.
[100] Käpnick, F. & Benölken, R. (2016). „Individuelles Fördern im Kontext von Inklusion“ – Ein Tagungsbericht. Mitteilungen der Gesellschaft für Didaktik der Mathematik, 101, S. 60 – 65.
[101] Benölken, R. & Berlinger, N. (2015). Geeignete Aufgaben zur Diagnostik und Förderung mathematisch begabter Kinder unter verschiedenen Perspektiven. In C. Fischer, C. Fischer-Ontrup, F. Käpnick, F.-J. Mönks, & C. Solzbacher (Hrsg.), Giftedness Across the Lifespan – Begabungsförderung von der frühen Kindheit bis ins Alter. Forder- und Förderkonzepte aus der Praxis. Berlin: Lit, S. 127 – 137.
[102] *Käpnick, F. & Benölken, R. (2015). Förderung von Matheassen: Der Fall Hannah. Journal für Begabtenförderung, 2, S. 58 – 61.
[103] *Käpnick, F. & Benölken, R. (2015). Umgang mit Heterogenität als Herausforderung für die Lehrerbildung. In C. Fischer, M. Veber, C. Fischer-Ontrup & R. Buschmann (Hrsg.), Umgang mit Vielfalt. Aufgaben und Herausforderungen für die Lehrerinnen- und Lehrerbildung. Münster: Waxmann, S. 217 – 230.
[104] *Benölken, R. (2014). The significance of attitudes towards mathematics as determinants for the identification of girls’ mathematical talent – a pilot-study. Proceedings of the 2nd Human and Social Sciences at the Common Conference (HASSACC 2014, virtuelle Konferenz), S. 174 – 178.
[105] *Benölken, R. (2013). Mathematische Begabung und Geschlecht. Theoretische Befunde und praktische Hinweise. In T. Fritzlar & F. Käpnick (Hrsg.), Mathematische Begabungen – Denkansätze zu einem komplexen Themenfeld aus verschiedenen Perspektiven. Münster: WTM, S. 153 – 180.
[106] Benölken, R. (2012). „Mathe für kleine Asse“ (für Mädchen!). Über eine Gruppe des Münsteraner Förderprojekts für mathematisch begabte Kinder an einer Grundschule. In C. Fischer, C. Fischer-Ontrup, F. Käpnick, F.-J. Mönks, H. Scheerer & C. Solzbacher (Hrsg.), Individuelle Förderung multipler Begabungen. Fachbezogene Forder- und Förderkonzepte. Berlin: Lit, S. 87 – 94.
[107] Benölken, R. (2010). Interessen mathematisch begabter Kinder. In F. Käpnick (Hrsg.), Das Münsteraner Projekt „Mathe für kleine Asse“. Perspektiven von Kindern, Studierenden und Wissenschaftlern. Münster: WTM, S. 109 – 124.
[108] Benölken, R. (2010). Geschlechts- und begabungsspezifische Unterschiede bei mathematischen Selbstkonzepten. In T. Fritzlar & F. Heinrich (Hrsg.), Kompetenzen mathematisch begabter Grundschulkinder erkunden und fördern. Offenburg: Mildenberger, S. 95 – 110.
[109] Benölken, R. (2008). Attributionsmuster mathematisch potenziell begabter Mädchen im Grundschulalter – Qualitative und quantitative Ergebnisse aus dem Münsteraner Förderprojekt „Mathe für kleine Asse“. In M. Fuchs & F. Käpnick (Hrsg.), Mathematisch begabte Kinder – Eine Herausforderung für Schule und Wissenschaft. Münster: Lit, S. 84 – 101.
Sonstige Publikationen
Referierte Publikationen sind in diesem Abschnitt mit * gekennzeichnet
[110] Beumann, S., Weber, D. & Benölken, R. (2024). Challenges identifying and fostering twice exceptional students – First results and perspectives. Paper presented at the 15th International Congress on Mathematical Education (ICME 15, Sydney, Australien) [angenommen].
[111] Benölken, R., Weber, D. & Hoiboom, N. (2024). Eindrücke zur Bund-Länder-Initiative ‚Leistung macht Schule‘ an der Schnittstelle von Entwicklungs- und Transferaktivitäten. Beiträge zum Mathematikunterricht 2024 (im Druck).
[112] Weber, D., Beumann, S., Hoiboom, N. & Benölken, R. (2024). Herausforderungen bei der Diagnostik und Förderung von 'twice-exceptional' Lernenden – Eindrücke aus Perspektive der Fachdidaktik. Beiträge zum Mathematikunterricht 2024 (im Druck).
[113] Geukes, M. & Benölken, R. (2023). „Dann merkt man, die Kinder fühlen sich da zu Hause“. Matthias Geukes und Ralf Benölken im Gespräch über Begabungsförderung. In N. Berlinger & T. Dexel (Hrsg.), Mathematisches Tätigsein ist vielfältig – Begabungsfördernder Mathematikunterricht für alle Kinder. Münster: WTM, S. 220 – 226.
[114] Benölken, R. Götze, D. & Ruwisch, S. (2023), Interventionsprogramme und Förderkonzepte für Kinder mit besonderen Schwierigkeiten beim Erlernen des Rechnens [Einleitungsbeitrag zum gleichnamigen Themenheft]. mathematica didactica, 46, S. 1 – 4.
[115] Benölken, R., Weber, D., Veber, M. & Stebner, F. (2022). Resilientes Verhalten von Lehrkräften im inklusiven Mathematikunterricht – Konzeption eines Messinstruments. In IDMI-Primar Goethe-Universität Frankfurt (Hrsg.), Beiträge zum Mathematikunterricht 2022. Münster: WTM, S. 577 – 580.
[116] Benölken, R. & Auhagen, W. (2021). LemaS – Leistung macht Schule. In Bergische Universität Wuppertal, UniService Transfer (Hrsg.), Starke Partner für starke Ideen. Ergebnisse erfolgreicher Kooperationen. Wuppertal: Bergische Universität Wuppertal, S. 34f. [auch verfügbar unter www.transfer.uni-wuppertal.de].
[117] *Brandl, M., Szabo, A., Mellroth, E. & Benölken, R. (2021). Educating prospective teachers in the field of mathematical giftedness – comparing experiences. Paper presented at the 14th International Congress on Mathematical Education (ICME 14, Shanghai, China, virtuelle Konferenz).
[118] *Bohlmann, N., Benölken, R. & Dexel, T. (2021). Adapting tasks between including and excluding students. Paper presented at the 14th International Congress on Mathematical Education (ICME 14, Shanghai, China, virtuelle Konferenz).
[119] *Aßmus, D. & Benölken, R. (2021). What do prospective teachers express as to mathematical giftedness? An exploratory study. Paper presented at the 14th International Congress on Mathematical Education (ICME 14, Shanghai, China, virtuelle Konferenz).
[120] *Käpnick, F., Benölken, R. & Schreiber, L. (2020). Adaptive Konzepte für das Fördern begabter SchülerInnen im regulären Mathematikunterricht. In H.-S. Siller, W. Weigel & J. F. Wörler (Hrsg.), Beiträge zum Mathematikunterricht 2020. Münster: WTM, S. 1111 – 1112.
[121] Käpnick, F. & Benölken, R. (2020). Leistung macht Schule – Entwicklung adaptiver Förderkonzepte für leistungsstarke Schüler. In H.-S. Siller, W. Weigel & J. F. Wörler (Hrsg.), Beiträge zum Mathematikunterricht 2020. Münster: WTM, S. 1125 – 1128.
[122] Oswald, N. & Benölken, R. (2020). LuPen – ein Projekt für Studierende im Master of Education. In H.-S. Siller, W. Weigel & J. F. Wörler (Hrsg.), Beiträge zum Mathematikunterricht 2020. Münster: WTM, S. 1417 – 1420.
[123] Benölken, R. (2019). Diversität und Inklusion – gemeinsam lernen und individuell fördern im Mathematikunterricht (erweitertes und veröffentlichtes Vortragsskript zu den „Kompetenztagen Grundschule“, organisiert durch die Bezirksregierung Münster), verfügbar unter: kompetenz-grundschule.de
[124] Benölken, R. (2018). Einschätzungen zum Förderprogramm „Cody“ aus mathematikdidaktischen Perspektiven (Expertise für das vom Bundesministerium für Bildung und Forschung unterstützte Projekt „Entwicklung und Implementation einer Online-Plattform zur Diagnostik und Förderung von Kindern mit einer umschriebenen Entwicklungsstörung schulischer Fertigkeiten“ [„On-DiFoe“]). Universität Wuppertal [unveröffentlicht].
[125] Benölken, R. & Veber, M. (2018). Fachfremder Mathematikunterricht in schulischer Inklusion – Forschungseinblicke und Ausblicke auf Professionalisierungsangebote. In Fachgruppe Didaktik der Mathematik der Universität Paderborn (Hrsg.), Beiträge zum Mathematikunterricht 2018. Münster: WTM, S. 249 – 252.
[126] *Benölken, R. & Mellroth, E. (2017). The significance of motivational factors from a potential- and gender-related view. Proceedings of the 8th Nordic Conference on Mathematics Education (NORMA 8). Nordic Society for Research in Mathematics Education: Stockholm, Schweden [verfügbar unter www.mnd.su.se/om-oss/evenemang/norma-17].
[127] Benölken, R., Veber, M. & Berlinger, N. (2017). Wie lassen sich universitäre Lehrveranstaltungen zu Inklusiver Bildung im Mathematikunterricht konzipieren? Ein Erfahrungsbericht aus dem IMU-Lehrprojekt. In U. Kortenkamp & A. Kuzle (Hrsg.), Beiträge zum Mathematikunterricht 2017. Münster: WTM, S. 75 – 78.
[128] Berlinger, N., Benölken, R. & Veber, M. (2017). Offene, substanzielle Problemfelder – ein Baustein zur didaktischen Realisierung eines inklusiven Mathematikunterrichts. In U. Kortenkamp & A. Kuzle (Hrsg.), Beiträge zum Mathematikunterricht 2017. Münster: WTM, S. 83 – 86.
[129] *Benölken, R. & Mellroth, E. (2016). Mathematical promise and frequent characteristics of motivational factors with Swedish girls and boys. Paper presented at the 13th International Congress on Mathematical Education (ICME 13, Hamburg).
[130] *Mellroth, E. & Benölken, R. (2016). A cross country comparison of teacher training programs on mathematical promise and talent. Paper presented at the 13th International Congress on Mathematical Education (ICME 13, Hamburg).
[131] Benölken, R. (2016). Wünsche von Mädchen und Jungen zur Gestaltung des Mathematikunterrichts – Erste Ergebnisse einer qualitativen Studie. In Institut für Mathematik und Informatik der Pädagogischen Hochschule Heidelberg (Hrsg.), Beiträge zum Mathematikunterricht 2016. Münster: WTM, S. 125 – 128.
[132] Benölken, R. & Kelm, J. (2015). MaKosi – Ein Projekt zur Förderung von Kindern mit „Rechenproblemen“. In F. Caluori, H. Linneweber-Lammerskitten & C. Streit (Hrsg.), Beiträge zum Mathematikunterricht 2015 (Bd. 1). Münster: WTM, S. 136 – 139.
[133] Benölken, R. & Käpnick, F. (2015). „Mathe für kleine Asse“ – Ein Lehr-Lern-Labor an der Universität Münster. In F. Caluori, H. Linneweber-Lammerskitten & C. Streit (Hrsg.), Beiträge zum Mathematikunterricht 2015 (Bd. 1). Münster: WTM, S. 140 – 143.
[134] Benölken, R. (2014). Von der Begabungstheorie zur Rechenschwäche – Versuch eines Brückenschlages. In J. Roth & J. Ames (Hrsg.), Beiträge zum Mathematikunterricht 2014. Münster: WTM, S. 161 – 164.
[135] Benölken, R. & Talhoff, K. (2014). Zur Bedeutung motivationaler Faktoren für die Entwicklung und für die Identifikation mathematischer Begabungen. In J. Roth & J. Ames (Hrsg.), Beiträge zum Mathematikunterricht 2014. Münster: WTM, S. 1203 – 1206.
[136] Benölken, R. (2013). Gruppenwettbewerbe: Eine geeignete Organisationsform für die Förderung mathematisch begabter Kinder? In G. Greefrath, F. Käpnick & M. Stein (Hrsg.), Beiträge zum Mathematikunterricht 2013. Münster: WTM, S. 120 – 123.
[137] Benölken, R., Geukes, M. & Talhoff, K. (2013). Mathematik in der lebenswertesten Stadt der Welt – Eine mathematische Stadtrallye durch Münster. In G. Greefrath, F. Käpnick & M. Stein (Hrsg.), Beiträge zum Mathematikunterricht 2013. Münster: WTM, S. 352 – 355.
[138] Benölken, R. (2012). Geschlechts- und begabungsspezifische Besonderheiten im Grundschulalter. In M. Ludwig & M. Kleine (Hrsg.), Beiträge zum Mathematikunterricht 2012 (Bd. 1). Münster: WTM, S. 113 – 116.
[139] Benölken, R. (2011). „Mathe für kleine Asse (Werne)“ – Entwicklung des Konzepts eines außerunterrichtlichen Enrichmentprojekts für mathematisch begabte und interessierte Kinder der Jahrgangsstufen 5 und 6 als Beispiel für die individuelle Förderung im Fach Mathematik. Hausarbeit im Rahmen der Zweiten Staatsprüfung für das Lehramt der Sekundarstufen II und I. Studienseminar für Lehrämter an Schulen Hamm (Westf.), Seminar für das Lehramt an Gymnasien und Gesamtschulen, betreut durch Dr. A. Pallack.
[140] Benölken, R. (2009). Mathematisch begabte Mädchen im Grundschulalter. In M. Neubrand (Hrsg.), Beiträge zum Mathematikunterricht 2009 (Teil II. Einzelvorträge und Workshops). Münster: WTM, S. 467 – 470.
[141] Benölken, R. (2008). Besonderheiten mathematisch begabter Mädchen im Grundschulalter. In E. Vásárhelyi (Hrsg.), Beiträge zum Mathematikunterricht 2008. Münster: WTM, S. 327 – 330.
[142] Benölken, R. (2008). Origami als Fördermöglichkeit mathematisch begabter Grundschulkinder? In C. Fischer, F.-J. Mönks & U. Westphal (Hrsg.), Individuelle Förderung: Begabungen entfalten – Persönlichkeiten entwickeln. Münster: Lit, S. 292.
Handreichungen und Beiträge aus dem Projekt "Leistung macht Schule"
[143] Benölken, R. (2023). Schlussbericht zum Projekt „Konzepte für eine diagnosebasierte individuelle Förderung von leistungsstarken und potenziell besonders leistungsfähigen Schülerinnen und Schülern im Mathematikunterricht unter adaptiver Sicht“ („Kodif-M-a“).
[144] Benölken, R., Käpnick, F., Auhagen, W. & Weber, D. (Hrsg., 2023). Adaptive Förderkonzepte für den Mathematikunterricht der Klassen 1 bis 10. Schulbeispiele. Wuppertal und Münster: Forschungsverbund „Leistung macht Schule“.
[145] Benölken, R., Käpnick, F., Auhagen, W. & Weber, D. (Hrsg., 2023). Potenzialfördernde Lernumgebungen im Mathematikunterricht der Klassenstufen 1 bis 4. Wuppertal und Münster: Forschungsverbund „Leistung macht Schule“.
[146] Benölken, R., Käpnick, F., Auhagen, W. & Weber, D. (Hrsg., 2023). Potenzialfördernde Lernumgebungen im Mathematikunterricht der Klassenstufen 5 bis 10. Wuppertal und Münster: Forschungsverbund „Leistung macht Schule“.
[147] Fuchs, M., Käpnick, F. & Benölken, R. (2023). Begabungsförderndes und forschendes Lernen im Mathematikunterricht der Grundschule – Gesamtkonzept. Münster: Forschungsverbund „Leistung macht Schule“.
[148] Käpnick, F., Schreiber, L., Girard, P. & Benölken, R. (2023). Begabungsförderndes und forschendes Lernen im Mathematikunterricht der Sekundarstufe – Gesamtkonzept. Münster: Forschungsverbund „Leistung macht Schule“.
[149] Käpnick, F., Benölken, R., Witte, A. & Lehrkräfte aus verschiedenen Schulen (2023). Professionalisierungskonzept für Mathematiklehrpersonen der Grundschule – Begabungsfördernde Lernkultur entwickeln und evaluieren. Münster: Forschungsverbund „Leistung macht Schule“.
[150] Käpnick, F., Benölken, R., Schreiber, L., Girard, P. & Lehrkräfte aus verschiedenen Schulen (2023). Professionalisierungskonzept für Mathematiklehrpersonen der Sekundarstufe I – Begabungsfördernde Lernkultur entwickeln und evaluieren. Münster: Forschungsverbund „Leistung macht Schule“.
[151] Auhagen, W. & Benölken, R. (2023). Zoobesuch. In R. Benölken, F. Käpnick, W. Auhagen & D. Weber (Hrsg.). Potenzialfördernde Lernumgebungen im Mathematikunterricht der Klassenstufen 1 bis 4. Wuppertal und Münster: Forschungsverbund „Leistung macht Schule“, S. 79 – 83.
[152] Weber, D. & Benölken, R. (2023). Blütenaufgaben - Grundlegende Einordnungen. In R. Benölken, F. Käpnick, W. Auhagen & D. Weber (Hrsg.). Potenzialfördernde Lernumgebungen im Mathematikunterricht der Klassenstufen 1 bis 4. Wuppertal und Münster: Forschungsverbund „Leistung macht Schule“, S. 98 – 102.
[153] Auhagen, W. & Benölken, R. (2023). Kartenhauszahlen. In R. Benölken, F. Käpnick, W. Auhagen & D. Weber (Hrsg.), Potenzialfördernde Lernumgebungen im Mathematikunterricht der Klassenstufen 5 bis 10. Wuppertal und Münster: Forschungsverbund „Leistung macht Schule“, S. 23 – 27.
[154] Auhagen, W. & Benölken, R. (2023). Quipu. In R. Benölken, F. Käpnick, W. Auhagen & D. Weber (Hrsg.), Potenzialfördernde Lernumgebungen im Mathematikunterricht der Klassenstufen 5 bis 10. Wuppertal und Münster: Forschungsverbund „Leistung macht Schule“, S. 28 – 33.
[155] Benölken, R., Weber, D. & Auhagen, W. (2023). Exkursionen, Expert*innenvorträge, Facharbeiten & Co. – weitere Fördermöglichkeiten. In R. Benölken, F. Käpnick, W. Auhagen & D. Weber (Hrsg.), Potenzialfördernde Lernumgebungen im Mathematikunterricht der Klassenstufen 5 bis 10. Wuppertal und Münster: Forschungsverbund „Leistung macht Schule“, S. 81 – 97.
[156] Weber, D. & Benölken, R. (2023). Das Oberwolfach-Problem. In R. Benölken, F. Käpnick, W. Auhagen & D. Weber (Hrsg.), Potenzialfördernde Lernumgebungen im Mathematikunterricht der Klassenstufen 5 bis 10. Wuppertal und Münster: Forschungsverbund „Leistung macht Schule“, S. 48 – 52.
[157] Weber, D. & Benölken, R. (2023). Blütenaufgaben - Grundlegende Einordnungen. In R. Benölken, F. Käpnick, W. Auhagen & D. Weber (Hrsg.), Potenzialfördernde Lernumgebungen im Mathematikunterricht der Klassenstufen 5 bis 10. Wuppertal und Münster: Forschungsverbund „Leistung macht Schule“, S. 60 – 64.
[158] Weber, D. & Benölken, R. (2023). Lootboxen. In R. Benölken, F. Käpnick, W. Auhagen & D. Weber (Hrsg.), Potenzialfördernde Lernumgebungen im Mathematikunterricht der Klassenstufen 5 bis 10. Wuppertal und Münster: Forschungsverbund „Leistung macht Schule“, S. 78 – 79.
[159] Benölken, R. & Weber, D. (2023). Gelingensbedingungen für die erfolgreiche Entwicklung und Implementierung von Konzepten der Begabungs- und Begabtenförderung. In R. Benölken, F. Käpnick, W. Auhagen & D. Weber (Hrsg.), Adaptive Förderkonzepte für den Mathematikunterricht der Klassen 1 bis 10. Schulbeispiele. Wuppertal und Münster: Forschungsverbund „Leistung macht Schule“, S. 76 – 80.
Posterbeteiligungen
Referierte Beiträge sind in diesem Abschnitt mit * gekennzeichnet
[160] Hoiboom, N. & Benölken, R. (2024). Die Digitale Drehtür an der Bergischen Universität Wuppertal (Poster präsentiert auf dem Vernetzungstreffen des Wissenschaftsnetzwerks des Projekts „Digitale Drehtür“ am 09. und 10.04.2024 in Bremen).
[161] *Tiedke, A. & Benölken, R. (2023). Professionalisierung von Studierenden für das Lehramt an Berufskollegs im Fach Mathematik (Poster präsentiert auf der Tagung „Lehrkräfteprofessionalisierung: Facetten, Förderung und zukünftige Herausforderungen“ am 23. und 24.03.2023 an der Bergischen Universität Wuppertal).
[162] Käpnick, F., Benölken, R., Auhagen, W., Schreiber, L., Kaiser, J., Girard, P. & Ohmann, Y. (2020). Laufende Promotionsvorhaben in den LemaS-Teilprojekten 3 und 8 (Poster präsentiert auf dem Netzwerktreffen der MINT-Teilprojekte am 16.01.2020 an der Westfälischen Wilhelms-Universität Münster).
[163] Benölken, R. & Auhagen, W. (2020). Eindrücke aus aktuellen Forschungsvorhaben (Poster präsentiert auf dem Arbeitstreffen der Bund-Länder-Initiative „Leistung macht Schule“ am 27. und 28.02.2020 an der Freien Universität Berlin).
[164] *Benölken, R., Auhagen, W. & Kißling, C. (2019). THINK – Ein Enrichmentprojekt für mathematisch interessierte Kinder (Poster präsentiert auf dem Kongress 2019 des Österreichischen Zentrums für Begabtenförderung und Begabungsforschung [ÖZBF] vom 14. bis 16.11.2019 in Salzburg, Österreich).
[165] Brüning, A.-K. & Benölken, R. (2017). Forschung zu Lernprozessen in den mathematischen Lehr-Lern-Laboren in Münster (Poster präsentiert auf der Herbsttagung des GDM-Arbeitskreises „Lehr-Lern-Labore“ am 20. und 21.10.2017 an der Universität Leipzig).
[166] *Benölken, R., Veber, M. & Berlinger, N. (2016). Potenzialorientierung, Begabungsförderung & Inklusion: Ideen für die Mathematiklehramtsausbildung (Poster präsentiert auf dem Kongress 2016 des Österreichischen Zentrums für Begabtenförderung und Begabungsforschung [ÖZBF] vom 20. bis 22.10.2016 in Salzburg, Österreich).
[167] Brüning, A.-K. & Benölken, R. (2016). Forschungsaktivitäten der mathematischen Lehr-Lern-Labore in Münster (Poster präsentiert auf der Herbsttagung des GDM-Arbeitskreises „Lehr-Lern-Labore“ am 23. und 24.09.2016 an der Universität Gießen).
[168] Benölken, R. (2015). MaKosi – Ein Förder-, Lehr- und Forschungsprojekt im Themenkomplex „Rechenprobleme“ (Poster präsentiert auf der Herbsttagung des GDM-Arbeitskreises „Lehr-Lern-Labore“ am 26. und 27.09.2015 an der Universität Koblenz-Landau, Campus Landau).
[169] Benölken, R. & Kelm, J. (2015). Das Lehr-Lern-Labor „MaKosi“ (Poster präsentiert auf der Tagung „Individuelles Fördern im Kontext von Inklusion“ am 24. und 25.04.2015 an der Universität Münster).
Beiträge zu Schulbüchern
Die Beiträge in diesem Abschnitt sind in chronologischer Reihenfolge aufgeführt.
[170] Benölken, R. (2013). 1.3 Große Zahlen. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 5 (S. 15–19). Berlin: Cornelsen.
[171] Benölken, R. (2013). Streifzug: Römische Zahlen. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 5 (S. 24–25). Berlin: Cornelsen.
[172] Benölken, R. (2013). 1.5 Schätzen und Messen. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 5 (S. 26–30). Berlin: Cornelsen.
[173] Benölken, R. (2013). Prüfe dein neues Fundament, Kap. 1. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 5 (S. 44–45). Berlin: Cornelsen.
[174] Benölken, R. (2013). Streifzug: Parallelverschiebung. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 5 (S. 54–55). Berlin: Cornelsen.
[175] Benölken, R. (2013). Streifzug: Vedische Mathematik. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 5 (S. 101–102). Berlin: Cornelsen.
[176] Benölken, R. (2013). Streifzug: Magischer Schnitt. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 5 (S. 141–142). Berlin: Cornelsen.
[177] Benölken, R. (2013). Prüfe dein neues Fundament, Kap. 5. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 5 (S. 170–171). Berlin: Cornelsen.
[178] Benölken, R. (2013). 6.5 Volumen eines Quaders. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 5 (S. 190–193). Berlin: Cornelsen.
[179] Benölken, R. (2013). Prüfe dein neues Fundament, Kap. 6. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 5 (S. 202–203). Berlin: Cornelsen.
[180] Benölken, R. (2013). Komplexe Aufgaben – Kuchenverkauf. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 5 (S. 210). Berlin: Cornelsen.
[181] Benölken, R. (2013). Streifzug: Primfaktorzerlegung. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 6 (S. 22–25). Berlin: Cornelsen.
[182] Benölken, R. (2013). Prüfe dein neues Fundament, Kap. 1. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 6 (S. 44–45). Berlin: Cornelsen.
[183] Benölken, R. (2013). Prüfe dein neues Fundament, Kap. 2. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 6 (S. 66–67). Berlin: Cornelsen.
[184] Benölken, R. (2013). Streifzug: Farey-Folgen. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 6 (S. 74–75). Berlin: Cornelsen.
[185] Benölken, R. (2013). Prüfe dein neues Fundament, Kap. 3. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 6 (S. 94–95). Berlin: Cornelsen.
[186] Benölken, R. (2013). Prüfe dein neues Fundament, Kap. 4. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 6 (S. 120–121). Berlin: Cornelsen.
[187] Benölken, R. (2013). Prüfe dein neues Fundament, Kap. 5. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 6 (S. 146–147). Berlin: Cornelsen.
[188] Benölken, R. (2013). Streifzug: Linien- und Netzdiagramme. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 6 (S. 167–170). Berlin: Cornelsen.
[189] Benölken, R. (2013). 7.2 Ganze Zahlen vergleichen und ordnen. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 6 (S. 184–186). Berlin: Cornelsen.
[190] Benölken, R. (2014). Prüfe dein neues Fundament, Kap. 1. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 7 (S. 34–35). Berlin: Cornelsen.
[191] Benölken, R. (2014). Prüfe dein neues Fundament, Kap. 2. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 7 (S. 60–61). Berlin: Cornelsen.
[192] Benölken, R. (2014). Streifzug: Ungleichungen. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 7 (S. 81–83). Berlin: Cornelsen.
[193] Benölken, R. (2014). Prüfe dein neues Fundament, Kap. 3. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 7 (S. 86–87). Berlin: Cornelsen.
[194] Benölken, R. (2014). Streifzug: Historische Aspekte der Geometrie. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 7 (S. 104–106). Berlin: Cornelsen.
[195] Benölken, R. (2014). Streifzug: Inkreis und Umkreis von Dreiecken. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 7 (S. 111–116). Berlin: Cornelsen.
[196] Benölken, R. (2014). Prüfe dein neues Fundament, Kap. 4. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 7 (S. 120–121). Berlin: Cornelsen.
[197] Benölken, R. (2014). Streifzug: Zinseszins. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 7 (S. 140–142). Berlin: Cornelsen.
[198] Benölken, R. (2014). Prüfe dein neues Fundament, Kap. 5. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 7 (S. 148–149). Berlin: Cornelsen.
[199] Benölken, R. (2014). Prüfe dein neues Fundament, Kap. 6. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 7 (S. 166–167). Berlin: Cornelsen.
[200] Benölken, R. (2014). Prüfe dein neues Fundament, Kap. 7. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 7 (S. 196–197). Berlin: Cornelsen.
[201] Benölken, R. (2014). Streifzug: Stückweise lineare Funktionen. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 8 (S. 28–29). Berlin: Cornelsen.
[202] Benölken, R. (2014). Prüfe dein neues Fundament, Kap. 1. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 8 (S. 32–33). Berlin: Cornelsen.
[203] Benölken, R. (2014). Prüfe dein neues Fundament, Kap. 2. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 8 (S. 62–63). Berlin: Cornelsen.
[204] Benölken, R. (2014). 3.3 Die 1. binomische Formel. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 8 (S. 77–78). Berlin: Cornelsen.
[205] Benölken, R. (2014). 3.4 Die 2. binomische Formel. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 8 (S. 79–80). Berlin: Cornelsen.
[206] Benölken, R. (2014). 3.5 Die 3. binomische Formel. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 8 (S. 81–83). Berlin: Cornelsen.
[207] Benölken, R. (2014). Streifzug: Pascal‘sches Dreieck. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 8 (S. 84–85). Berlin: Cornelsen.
[208] Benölken, R. (2014). Prüfe dein neues Fundament, Kap. 3. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 8 (S. 88–89). Berlin: Cornelsen.
[209] Benölken, R. (2014). Prüfe dein neues Fundament, Kap. 4. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 8 (S. 116–117). Berlin: Cornelsen.
[210] Benölken, R. (2014). 5.3 Irrationale Zahlen und Intervallschachtelung. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 8 (S. 130–133). Berlin: Cornelsen.
[211] Benölken, R. (2014). Streifzug: Heron-Verfahren. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 8 (S. 134–135). Berlin: Cornelsen.
[212] Benölken, R. (2014). Prüfe dein neues Fundament, Kap. 5. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 8 (S. 142–143). Berlin: Cornelsen.
[213] Benölken, R. (2014). Prüfe dein neues Fundament, Kap. 6. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 8 (S. 162–163). Berlin: Cornelsen.
[214] Benölken, R. (2014). Prüfe dein neues Fundament, Kap. 7. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 8 (S. 188–189). Berlin: Cornelsen.
[215] Benölken, R. (2015). Prüfe dein neues Fundament, Kap. 1. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 9 (S. 46–47). Berlin: Cornelsen.
[216] Benölken, R. (2015). Prüfe dein neues Fundament, Kap. 2. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 9 (S. 70–71). Berlin: Cornelsen.
[217] Benölken, R. (2015). Prüfe dein neues Fundament, Kap. 3. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 9 (S. 98–99). Berlin: Cornelsen.
[218] Benölken, R. (2015). Streifzug: Goldener Schnitt. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 9 (S. 122–124). Berlin: Cornelsen.
[219] Benölken, R. (2015). Prüfe dein neues Fundament, Kap. 4. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 9 (S. 138–139). Berlin: Cornelsen.
[220] Benölken, R. (2015). 5.3 Sinusfunktion. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 9 (S. 156–159). Berlin: Cornelsen.
[221] Benölken, R. (2015). Streifzug: Parametereinfluss. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 9 (S. 160–163). Berlin: Cornelsen.
[222] Benölken, R. (2015). 5.4 Periodische Vorgänge. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 9 (S. 164–167). Berlin: Cornelsen.
[223] Benölken, R. (2015). Prüfe dein neues Fundament, Kap. 5. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 9 (S. 170–171). Berlin: Cornelsen.
[224] Benölken, R. (2015). Prüfe dein neues Fundament, Kap. 6. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 9 (S. 194–195). Berlin: Cornelsen.
[225] Benölken, R. (2015). 7.1 Oberfläche und Netz einer Pyramide. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 9 (S. 200–202). Berlin: Cornelsen.
[226] Benölken, R. (2015). 7.2 Oberfläche und Netz eines Kegels. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 9 (S. 203–205). Berlin: Cornelsen.
[227] Benölken, R. (2015). Streifzug: Umgang mit mathematischen Texten. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 9 (S. 206–210). Berlin: Cornelsen.
[228] Benölken, R. (2015). 7.3 Volumen einer Pyramide und eines Kegels. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 9 (S. 211–214). Berlin: Cornelsen.
[229] Benölken, R. (2015). 7.4 Oberfläche einer Kugel. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 9 (S. 215–216). Berlin: Cornelsen.
[230] Benölken, R. (2015). 7.5 Volumen einer Kugel. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 9 (S. 217–219). Berlin: Cornelsen.
[231] Benölken, R. (2015). 7.6 Schrägbild und Dreitafelprojektion. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 9 (S. 220–224). Berlin: Cornelsen.
[232] Benölken, R. (2015). Streifzug: Stereographische Projektion. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 9 (S. 225–228). Berlin: Cornelsen.
[233] Benölken, R. (2015). Prüfe dein neues Fundament, Kap. 7. In A. Pallack (Hrsg.), Fundamente der Mathematik. Nordrhein-Westfalen. Gymnasium. Klasse 9 (S. 230–231). Berlin: Cornelsen.
[234] Benölken, R. (2016). 6.4 Ähnliche Figuren. In A. Pallack (Hrsg.), Fundamente der Mathematik. Berlin-Brandenburg (Ausgabe B). Gymnasium. Klasse 7 (S. 198–201). Berlin: Cornelsen.
[235] Benölken, R. (2016). 6.5 Umfang und Flächeninhalt ähnlicher Figuren. In A. Pallack (Hrsg.), Fundamente der Mathematik. Berlin-Brandenburg (Ausgabe B). Gymnasium. Klasse 7 (S. 202–203). Berlin: Cornelsen.
[236] Benölken, R. (2016). 2.5 Umfang und Flächeninhalt zusammengesetzter Figuren. In A. Pallack (Hrsg.), Fundamente der Mathematik. Berlin-Brandenburg (Ausgabe B). Gymnasium. Klasse 8 (S. 46–47). Berlin: Cornelsen.
[237] Benölken, R. (2016). 7.5 Geometrische Sätze. In A. Pallack (Hrsg.), Fundamente der Mathematik. Baden-Württemberg. Gymnasium. Klasse 7 (S. 181–184). Berlin: Cornelsen.
[238] Benölken, R. (2016). Streifzug: Satz und Kehrsatz. In A. Pallack (Hrsg.), Fundamente der Mathematik. Baden-Württemberg. Gymnasium. Klasse 7 (S. 185–186). Berlin: Cornelsen.